5 Reasons to add a Wave Spectrometer and AZtecWave to your SEM

The Wave Spectrometer and the AZtecWave software brings Wavelength Dispersive Spectrometry (WDS/WDX) to the Scanning Electron Microscope (SEM) – delivering advanced analytical capability for quantitative elemental analysis in a software package that has been designed to be instructive for the novice and flexible for the expert. Here are five key reasons why you should add a Wave spectrometer and AZtecWave to your SEM:

High spectral resolution

ті кв1

4.9

Ka

4.95

A. Harry

- Achieve the highest spectral resolution available on the SEM (Si K α = <2 eV, Fe K α = <25 eV)
 - Fully separate challenging peak overlaps (e.g. S Kα/Mo Lα, Ti Kβ/V Kα) that cannot be achieved with other techniques (e.g. EDS, parallel beam WDS)
 - Make more accurate quantitative measurements

2. Low detection limits

- Achieve detection limits of <100 ppm for many elements (Si Kα = 9 ppm, Fe Kα = 15 ppm)
 - Positively identify and accurately quantify trace elements
 - Analyse a wide range of X-ray energies (max of 0.07 15.33 keV) essential for many applications

3. Relative insensitivity to sample positioning

- Achieved by positioning the Rowland circle Wave spectrometer at an inclined angle
- Analytical focus can simply be achieved with SEM secondary electron imaging
- No need for time-consuming focussing routines

4. Full integration of WDS and EDS

- Simultaneously acquire and automatically combine Energy Dispersive Spectrometry (EDS/EDX) and WDS data
- Make the most of your time obtain fast and accurate quantitative data for major elements with EDS, powered by Ultim Max EDS detectors and Tru-Q[™] data processing
- Utilise WDS where it is really needed for trace element quantification and separation of challenging peak overlaps

5 Ease of use of the AZtecWave software

- Guided, step-by-step workflows specifically designed for WDS (+/-EDS) acquisition
- Unique technology automatically sets up the optimal WDS (+/-EDS) collection settings and shows the expected WDS data quality prior to acquisition – saving you time
- Inbuilt spectrometer performance checks to ensure that the Wave spectrometer is set up and working correctly – giving you piece of mind

For more information please go to nano.oxinst.com/products/wds/ or email nano@oxinst.com

5 Reasons to add a Wave Spectrometer and AZtecWave to your SEM

Here is an example of how the unique software technology in AZtecWave makes collecting WDS data easy and efficient:

Actual WDS scan result

AZtecWave predicts the quality of a WDS scan prior to acquisition - ensuring the chosen collection settings will give the data quality required.

Wave Spectrometer with W1 electronics	
Design/geometry	Fully focussing 210 mm Rowland circle with a 20 range of 33° to 135° (i.e. electron microprobe style)
Orientation on SEM column	Inclined
Attachment to SEM	Interface with motorised gate valve as standard
Diffracting crystals	Maximum of 6 on rotating crystal turret Standard: TAP, PET, LiF (200), plus LSM80N or LSM60 and LSM200 Additional options: LSM200, LSM80N, LSM80E, LSM60, LiF (220)
Quantification range	Wave 500 spectrometer = 0.17 – 10.84 keV (B to Pu) Wave 700 spectrometer = 0.07 – 10.84 keV (Be to Pu) Maximum achievable = 0.07 – 15.33 keV
Spectral resolution	Si K α = <2 eV Fe K α = <25 eV
Detection limit	Si Kα = 9 ppm Fe Kα = 15 ppm
X-ray counters	P10 (Ar-CH $_{\!_4})$ flow proportional counter and Xe sealed proportional counter mounted in tandem

Specifications

LITR511964-1

For more information please go to nano.oxinst.com/aztecwave or email nano@oxinst.com

